Программирование на языке Пролог для искусственного интеллекта

          

Программа 3 для задачи о восьми ферзях.



  Программа 3 для задачи о восьми ферзях.

задачи о восьми ферзях.

Процедура реш универсальна в том смысле, что ее можно использовать для решения задачи об N ферзях (на доске размером N х N). Нужно только правильно задеть области Dx, Dy и т.д.

Удобно автоматизировать получение этих областей. Для этого нам потребуется процедура

        генератор( Nl, N2, Список)

которая для двух заданных целых чисел Nl и N2 порождает список

        Список = [Nl, Nl + 1, Nl + 2, ..., N2 - 1, N2]

Вот она:

        генератор( N, N, [N]).

        генератор( Nl, N2, [Nl | Список]) :-
                    Nl < N2,
                    М is Nl + 1,
                    генератор( М, N2, Список).

Главную процедуру решение нужно соответствующим образом обобщить:

        решение( N, S)

где N - это размер доски, а S - решение, представляемое в виде списка Y-координат N ферзей. Вот обобщенное отношение решение:

        решение( N, S) :-
                генератор( 1, N, Dxy),
                Nu1 is 1 - N, Nu2 is N - 1,
                генератор( Nu1, Nu2, Du),
                Nv2 is N + N,
                генератор( 2, Nv2, Dv),
                реш( S, Dxy, Dxy, Du, Dv).

Например, решение задачи о 12 ферзях будет получено с помощью:

        ?-  решение( 12, S).

        S = [1, 3, 5, 8, 10, 12, 6, 11, 2, 7, 9, 4]

    Заключительные замечания
4.    Заключительные замечания

Три решения задачи о восьми ферзях показывают, как к одной и той же задаче можно применять различные подходы. Мы варьировали также и представление данных. В одних случаях это представление было более экономным, в других - более наглядным и, до некоторой степени, избыточным. К недостаткам более экономного представления можно отнести то, что какая-то информация всякий раз, когда она требовалась, должна была перевычисляться.

В некоторых случаях основным шагом к решению было обобщение задачи. Как ни парадоксально, но при рассмотрении более общей задачи решение оказывалось проще сформулировать. Принцип такого обобщения - стандартный прием программирования, и его можно часто применять.

Из всех трех программ третья лучше всего показывает, как подходить к общей задаче построения структуры из заданного множества элементов при наличии ограничений.

Возникает естественный вопрос: " Какая из трех программ наиболее эффективна?" В этом отношение программа 2 значительно хуже двух других, а эти последние - одинаковы. Причина в том, что основанная на перестановках программа 2 строит все перестановки, тогда как две другие программы способны отбросить плохую перестановку не дожидаясь, пока она будет полностью построена. Программа 3 наиболее эффективна. Она избегает некоторых арифметических вычислений, результаты которых уже сразу заложены в избыточное представление доски, используемое этой программой.



Содержание раздела